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Abstract: 

Multivariate data reduction techniques are widely used to describe modes of variability in 

atmospheric and oceanographic conditions for the world’s oceans.  Dominant modes of 

variability such as the Pacific Decadal Oscillation (PDO) are typically defined as a statistical 

summary of physical measurements, and include both principle components representing modes 

of variability over time, and an empirical orthogonal function (EOF) giving the spatial pattern 

associated with a positive or negative phase for each mode.  Typically, these indices are 

compared with biological conditions to describe or predict physical drivers of ecological 

dynamics.  In some circumstances, however, it may instead be useful to apply EOF analysis 

directly to biological measurements, estimating indices of biological variability as well as maps 

of biological response associated with each index.  We therefore develop a generalization of 

EOF analysis that can be applied directly to multispecies biological samples using a multivariate 

spatio-temporal model.  These biologically derived indices can then be compared with relevant 

indices derived from physical data, or used as covariates in spatially-varying coefficient models.  

We first show that a spatio-temporal model can replicate previous EOF estimates of the PDO and 

North Pacific Gyre Oscillation.  We then identify three axes of variability in the eastern Bering 

Sea using biomass-sampling data for fourteen bottom-associated fishes and decapod crustaceans 

from 1982-2017.  The first axis represents habitat preferences that are stable over time, and the 

second represents a multi-decadal trend in distribution for most species; for example, showing an 

increasing density for Alaska skate and arrowtooth flounder in the middle and inner domain.  

Finally, the third axis shows high interannual variability from 1982-1998 switching to multiyear 

stanzas from 1999-2017 and is highly correlated (0.87) with the extent of the cold bottom 

temperatures in this region and associated impacts on Alaska pollock and Pacific cod.  These 
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axes represent ecological dynamics for adult fishes and therefore integrate the impact of bottom-

up and top-down processes, and they also confirm the importance of cold-pool extent for fish 

distribution in the Bering Sea while visualizing its varied impact on individual species.  

Moreover, this spatio-temporal approach allows oceanographers to define annual indices 

representing modes of variability in diverse biological communities from widely available field-

sampling data.   
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Introduction 

 Oceanographers are confronted with a tremendous challenge in summarizing multivariate 

physical and biological processes into a tractable number of dominant patterns, which can then 

be readily communicated to other fields (e.g., fisheries scientists), used as covariates in climate 

models, or used in many other ways. One approach to this challenge is to identify dominant axes 

of variability for a given process, and then to represent the process as an index that varies over 

time, combined with a loadings map expressing the spatial pattern associated with the index.  

Familiar examples include the Pacific Decadal Oscillation (PDO; Mantua et al., 1997) and North 

Pacific Gyre Oscillation (NPGO; Di Lorenzo et al., 2008).  These indices capture patterns of 

basin-scale variability that play leading roles in the dynamics of regional ecosystems (Schwing et 

al., 2010), and also tend to capture variability in a suite of cross-correlated, ecologically 

important processes (Stenseth et al., 2003), making them valuable tools for summarizing climate 

effects on marine biota.  For example, the importance of the PDO was established via 

comparison with records of salmon returns in the Pacific Ocean (Mantua et al., 1997), while the 

importance of the NPGO was demonstrated via its correlation with nutrients and chlorophyll 

concentrations in southern California (NPGO; Di Lorenzo et al., 2008).  These ocean climate 

indices are typically referred to as principal components (PCs) for the temporal index and  

empirical orthogonal functions (EOFs) for the loadings (e.g., Trenberth et al., 2014).  Here we 

broadly use the term “EOF analysis” to refer to the algorithm generating both the temporal index 

and the spatial map associated with it, while recognizing that different authors use different 

algorithms for individual steps in the EOF analysis (e.g., PCA vs. factor analysis for generating 

the temporal index).   
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 There have been several applications of EOF analysis to biological spatio-temporal data in 

the last decade (e.g., Morfin et al., 2012; Marshall et al., 2016). However, previous applications 

of data reduction techniques applied to biological data involve either the aggregation across 

space and time so to obtain regional averages of multi-species biomass (e.g., PCA applied to 

annual indices of species biomass, Planque and Arneberg (2018)), or aggregation across species 

so to obtain single-species measurement of biomass across multiple sampling sites (e.g., EOF 

analysis of spatio-temporal data from single species). These data manipulations inevitably reduce 

the scope of ecological inference, sacrificing either small-scale spatiotemporal dynamics or the 

ability to generalize the effect of climate across multiple taxa (Puerta et al., 2019). 

In particular, we identify three technical hurdles when applying EOF analysis directly to 

biological sampling data: (1) biomass-sampling data has many zeros with few extreme values (a 

highly skewed “dust bunny distribution” sensu McCune and Root (2015)) which is poorly 

represented using a normal distribution; (2) biological samples often arise from spatially 

unbalanced sampling, which complicates the creation of spatial maps in unsampled areas or 

when fitting to spatially unbalanced sampling programs; and (3) biological sampling is often 

available for multiple species, and therefore EOF analysis must be generalized for multivariate 

data sets, where each variable has both temporal and spatial expression.   

 Despite the profusion of research using EOFs to characterize physical oceanographic 

conditions, it is not always clear how to relate these indices to biological processes.  This 

commonly involves a multi-step workflow, where physical variability is first summarized with 

EOF analysis, and the resulting index is then used as a covariate in a separate statistical model 

linking physical oceanography to biological or social outcomes.  Unfortunately, many published 

relationships between physical conditions and biological responses in ocean environments either 
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break down over time or have poor skill when forecasting (Myers, 1998; Thorson, 2019a). We 

note two ways that this multi-step workflow may contribute to poor out-of-sample predictive 

skill for statistical physics-biology relationships. First, climate indices derived from EOF 

analysis summarize physical dynamics across a large spatial domain.  These regional indices are 

then correlated with local conditions, and biological responses are then correlated with local 

conditions for each individual population (Newman et al., 2016; Stenseth et al., 2003; Wills et 

al., 2018). However, the correlation between regional indices and local physical conditions can 

change over time, thus changing their correlation with local biological responses (Litzow et al., 

2018; Newman et al., 2016). Second, the solution of the EOF analysis is defined such that the 

first axis explains the most variance in the underlying data, the second axis explains the second-

most, etc.  However, these definitions are fixed in time while different axes of physical variation 

may have a larger impact on biological during some conditions than others, e.g., physical 

variation associated with juvenile production may be more important after fishing has reduced 

the age-structure of a population (Hsieh et al., 2006).    

 Given these difficulties when using oceanographic indices of physical habitat to describe 

biological responses, we see a useful role for indices estimated directly from multivariate 

biological variables. In particular, recent improvements in statistical computation and spatial 

statistics have allowed the growth of multivariate spatio-temporal models (Clark et al., 2014; 

Latimer et al., 2009; Ovaskainen et al., 2017).  For example, spatial factor analysis (Thorson et 

al., 2015b) could be used to generalize EOF analysis using biomass samples for multiple species 

simultaneously, and therefore could represent indices of variation in the ecological dynamics that 

arise from both bottom-up and top-down processes.  We propose that these approaches would be 

useful for compressing one or more variables to a single (or few) easily visualized time series.  
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Indices derived from biological sampling data could then be correlated with similar indices 

estimated from physical data to explore physics-biology linkages, as a descriptive summary of 

ecological dynamics (e.g., McClatchie et al., 2018), or used directly as covariates in other 

biological models (e.g., O’Leary et al., 2018).   

 In this study, we develop a method to estimate dominant modes of variability (i.e., one or 

more indices, each associated with a map showing spatial patterns in the positive phase of a 

given index) that can be applied to noisy, multispecies field samples of biological variables.  We 

then demonstrate that this approach generalizes conventional EOF analysis by replicating 

estimates of PDO and the NPGO using North Pacific sea surface temperature fields.  Finally, we 

demonstrate the approach using data for fourteen bottom-associated fish and decapod species in 

the eastern Bering Sea.  Many studies in this system have linked the spatial distribution of fishes 

to the location and spatial extent of cold near-bottom temperatures (e.g., Wyllie-Echeverria and 

Wooster, 1998; Baker and Hollowed, 2014), although long-term trends in distribution appear to 

be independent of cold-pool extent for some species (Mueter and Litzow, 2008).  Similarly, our 

method estimates an index of ecosystem variability that is highly correlated with the spatial 

extent of cold near-bottom waters (termed the “cold pool”), and therefore corroborates the 

important role and estimates the spatially varying effect of coupled winter ice cover and summer 

bottom temperature in that region over the past 36 years.   

Methods 

A brief history of Empirical Orthogonal Function (EOF) analysis in physical oceanography 

 Climatologists, meteorologists, and oceanographers have used empirical orthogonal functions 

to characterize dominant modes of variability in physical ocean conditions for over fifty years.  

Grimmer (1963) applied factor analysis to sea surface temperature anomalies in the North 
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Atlantic to show that 80% of variance can be explained by a small number of latent variables.  

Kidson (1975a) introduced a similar method using principal components analysis (PCA) applied 

to monthly average precipitation and sea surface pressure to similarly show that a reduced set of 

variables could explain >75% of the original variance.  These studies established the common 

practice wherein a multivariate statistical techniques (PCA or factor analysis) is applied to 

spatially replicated measurements of a physical variable at multiple times (e.g., years or months), 

where a small number of dominant axes can be used to explain the large portion of variance in 

the original process.   

 Empirical orthogonal functions have subsequently been used to define or analyze several of 

the most widely-known global and regional processes in oceanography. Kidson (1975b) used 

EOF to measure the Southern Oscillation, a pattern in equatorial surface pressure and 

precipitation that was originally described by Walker (1924).  More recently, Mantua et al. 

(1997) used EOF to define the PDO as the dominant mode of variability in sea surface 

temperature (SST) in the North Pacific, and the second mode was further explored and 

interpreted by Bond et al. (2003) and subsequently called the “Victoria mode” (Ding et al., 

2015).  Similarly, Di Lorenzo et al. (2008) defined the NPGO as the second mode of variability 

for sea surface height (SSH) anomalies, and the NPGO is correlated with the Victoria mode via 

the high correlation between SST and SSH. 

 The PDO and NPGO have seen broad use in biological oceanography due to the correlation 

between these physical indices and biological production that underlies changes in fishery 

productivity (Di Lorenzo et al., 2008; Mantua et al., 1997).  For example, the importance of the 

PDO was originally demonstrated based on cycles in salmon productivity between Alaska and 

Oregon/Washington stocks (Mantua et al., 1997).  However, the correlation between the PDO 
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and salmon productivity has declined since the description of the PDO, apparently due to the 

changing associations between the PDO and localized physical processes that underlie salmon 

productivity for individual salmon stocks (Litzow et al., 2018).   

 Finally, we note ongoing research that defines EOFs in the context of a statistical model that 

separately estimates measurement errors from physical variation.  For example, Grimmer (1963) 

used factor analysis to separate measurement and process errors, and Ghil et al. (1981) 

subsequently defined a multivariate Kalman filter that explicitly models covariation in physical 

dynamics.  This Kalman-filter interpretation of EOF was subsequently extended by Wikle and 

Cressie (1999), who introduced a descriptive spatial process wherein the physical process is 

more similar at nearby than at distant locations.  Subsequently, these “spatio-temporal” models 

have rapidly developed due to improvements in statistical and computational techniques (e.g., 

Lindgren et al., 2011), and now are also widely used in ecology and fisheries science 

(Ovaskainen et al., 2017; Thorson, 2019b).  To our knowledge, however, this statistical 

generalization of EOF analysis to generate the index and the spatial map simultaneously has not 

been applied to multi-guild biological data (e.g., abundance or biomass for species in a 

community) while accounting for variable dynamics across both space and time.   

General approach 

We develop a method to estimate one or more ecosystem indices based on biomass-sampling 

data for multiple species.  Each index 𝑓 includes two components: 

1. a spatial map 𝒳𝑓,𝑐(𝑠) representing whether a given location 𝑠 has a positive or negative value 

(as well as the magnitude of that value) during a “positive phase” of the index; and  

2. a time-series 𝜆𝑓(𝑡) indicating whether a given time 𝑡 has a positive phase (𝜆𝑓(𝑡) > 0) or 

negative phase (𝜆𝑓(𝑡) < 0), as well as whether a given year has a weak magnitude (𝜆𝑓(𝑡) 
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within the 25% and 75% quantiles for 𝜆𝑓) or a strong magnitude (𝜆𝑓(𝑡) outside the 25% and 

75% quantiles).   

Importantly, the map 𝒳𝑓,𝑐(𝑠) associated with each time series 𝜆𝑓(𝑡) differs for each category 𝑐 

of 𝑛𝑐 modeled categories, and this allows our time series to represent multivariate data, for 

example, multispecies biomass samples from bottom trawl surveys.  In the following, we focus 

on annual variation (i.e., 𝑡 indexes different years), but the process could instead represent other 

time intervals (weekly, monthly, etc.). 

 To estimate these ecosystem indices, we begin by defining a predictor variable �̃�𝑐,𝑡(𝑠) that 

includes the net effect of all estimated oceanographic indices.  Each predictor variable is a linear 

combination of 𝑛𝑓 oceanographic indices: 
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𝑔( �̃�𝑐,𝑡(𝑠)⏟    
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

) = 𝛽𝑐,𝑡⏟
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠

+∑ 𝜆𝑓(𝑡)⏞  
𝐼𝑛𝑑𝑒𝑥 𝑝ℎ𝑎𝑠𝑒

𝒳𝑓,𝑐(𝑠)⏞    
𝐼𝑛𝑑𝑒𝑥 𝑚𝑎𝑝𝑛𝑓

𝑓=1⏟              
𝑁𝑒𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

 

1 

where 𝑔(�̃�) is a link function transforming the linear predictor to response �̃� and 𝛽𝑐,𝑡 are 

intercepts that vary among categories and times.  This predictor variable is then estimated by 

minimizing the difference between it and measurements 𝒴𝑐,𝑡(𝑠) of each response variable: 

195 

196 

197 

𝒴𝑐,𝑡(𝑠)~ℎ(𝒴𝑐,𝑡̃ (𝑠),… ) 2 

where ℎ is a probability distribution function for measurements 𝒴𝑐,𝑡(𝑠) given their predicted 

values 𝒴𝑐,𝑡(𝑠).  For a discussion of how this general model relates to previously developed 

spatio-temporal models, please see Appendix 1.  

Demonstrating the similarity to Empirical Orthogonal Function (EOF) analysis 

We first seek to show that this approach can generalize the EOF analysis that is widely used in 

physical oceanography to generate indices.  Published studies have implemented EOF using 
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either principle components analysis (PCA) or factor analysis (FA), and both involve a matrix 

𝑌𝑡(𝑠) of measurements of a physical variable at each location and time.  Anomalies from long-

1∗ 𝑛
term climate are then typically calculated, 𝑌𝑡 (𝑠) = 𝑌𝑡(𝑠) − ∑ 𝑡

𝑡=1𝑌𝑡(𝑠), and these anomalies 
𝑛𝑡

are used to calculate the sample covariance 𝑉𝑡,𝑡 for anomalies between any pair of times.  The 

analyst then applies an eigendecomposition (for PCA) or minimization algorithm (FA) to 

identify a set of 𝑛𝑓 orthogonal axes of covariation, ranked from most important to least 

important, such that the first few axes explain the majority of covariation.  These axes are then 

treated as the index 𝜆𝑓(𝑡), and the spatial map 𝑥𝑓(𝑠) associated with each index is calculated as 

either the correlation or regression of 𝜆𝑓(𝑡) and 𝑦𝑓(𝑠, 𝑡). 

 We replicate a univariate EOF analysis by simplifying the general model in four ways:   

1. Eliminate notation for multiple categories such that it is applied to a single response; 

2. Use an identity link function; 

3. Use a normal distribution for observations;  and  

4. Replace functions with matrices, i.e., 𝒳𝑓,𝑐(𝑠) with a matrix 𝐗 representing the predicted 

∗value of each oceanographic variable 𝑥 (𝑠𝑖, 𝑓) at the location for each sample 𝑖 for each 

index, and �̃�𝑐,𝑡(𝑠) with �̃�𝑖 representing the prediction for that sample 𝑖. 

These three changes result in the following model: 
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�̃�𝑖 = 𝛽(𝑡𝑖)  +∑𝜆𝑓(𝑡𝑖)𝑥
∗(𝑠𝑖, 𝑓)

𝑛𝑓

𝑓=1

 

𝑦𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(�̃�𝑖, 𝜎
2) 

3a 

3b 

2where 𝜎  is the variance of measurement errors, which is minimized by explaining variation in 

the response 𝑦(𝑠, 𝑡) ∗ to estimated indices, and 𝑥 (𝑠𝑖, 𝑓) is calculated from a predictive-process 

model of spatial variation.  We note that we do not center the data 𝑦(𝑠, 𝑡) prior to analysis using 
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this generalized model, so the first axis in this generalized model corresponds to persistent 

spatial differences that would otherwise be eliminated by centering the data.  This is different 

from conventional EOF analysis (which does center the data to calculate anomalies prior to 

analysis), and this difference means that the 2nd axis from the generalized model is similar to the 

1st axis from conventional EOF, the 3rd axis is similar to the 2nd from conventional EOF, etc.  

However, centering the data does not extend to other common forms of data analysis (e.g., 

generalized linear models) so not centering the data is important for subsequent generalizations.  

Also differing from conventional EOF, we estimate a separate intercept 𝛽𝑡 for every year, so that 

this term captures interannual variability in 𝑦(𝑠, 𝑡) among years (i.e., the increasing trend in 

surface temperatures due to climate forcing).  We estimate a separate intercept for each year to 

match model specification for the multi-species extension to biological sampling data, as 

justified below, and future applications could easily specify a model where this intercept is 

constant across years (to be more similar with conventional EOF analysis).  We then compare 

results with public values for the PDO (obtained Nov. 6, 2018 from  

http://research.jisao.washington.edu/pdo/PDO.latest.txt) and NPGO (obtained Nov. 6, 2018 from 

http://www.o3d.org/npgo/).   

Extension to multi-species biomass-sampling data 

We also seek to show how this approach can include biomass-sampling data for multiple species, 

such as are widely available worldwide from resource surveys of fish stocks.  For multivariate 

biomass-sampling data we define a more complicated sampling process, which involves several 

modifications to the general model: 

1. Use multiple categories, each with an independent intercept for each species and year;  
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2. Use a Poisson-link delta-model (Thorson 2017) where the linear predictor is associated with 

numbers density 𝑛, where encounter probability 𝑝𝑖 for sample 𝑖 is derived as a 

complementary log-log link from numbers density 𝑝𝑖 = 1 − exp (−𝑛𝑖) and expected biomass 

when encountered 𝑟𝑖 is defined such that it is proportional to numbers density, 𝑟𝑖 =

𝑛𝑖𝑤(𝑐𝑖, 𝑡𝑖), where 𝑤(𝑐𝑖, 𝑡𝑖) is the biomass per individual, which is estimated separately for 
𝑝𝑖

each category and year; and 

3. Minimize the negative log-likelihood for encounters and sampled biomass for each species. 

These changes result in the following model: 

𝑛𝑓 4a 

log(𝑛𝑖) = 𝛽(𝑐𝑖, 𝑡
∗

𝑖) +∑𝜆𝑓(𝑡𝑖)𝑥 (𝑠𝑖, 𝑐𝑖, 𝑓) 

𝑓=1

1 − 𝑝𝑖 if 𝐵 = 0 4b 
Pr(𝐵 = 𝑏(𝑠𝑖, 𝑐𝑖, 𝑡𝑖)) = {  

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(log(𝑟𝑖) , 𝜎
2
𝑡 ) if 𝐵 > 0

Where 𝛽(𝑐, 𝑡) is again an intercept for every category and time, Eq. 4b represents a delta-model 

distribution where 1 − 𝑝𝑖 is the probability mass associated with 𝐵 = 0, 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑎, 𝑏) is a 

lognormal probability density function with logmean 𝑎 2 and log-variance 𝑏, and 𝜎𝑡  is the residual 

estimated log-variance in positive catch rates.  We specify a separate intercept for every category 

and time because, in our experience, total abundance for marine fishes often varies substantially 

among years due endogenous biological processes (e.g., variable production of juveniles; 

Thorson et al. (2015a)) and the annually varying intercept “controls” for this variation such that 

remaining model explain shifts in distribution rather than total abundance.  This model includes a 

∗log-link (Eq. 4a) such that variation a 0.01 increase in 𝜆𝑓(𝑡𝑖)𝑥 (𝑠𝑖, 𝑐𝑖, 𝑓) corresponds to an 

approximately 1% increase in expected biomass.  This relative scale implies that all coefficients 

representing spatial and temporal variation (i.e., the right-hand side of Eq. 4a) are dimensionless.   
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 In the introduction, we noted three difficulties with applying EOF to biological sampling 

data: (1) many zeros and a skewed distribution; (2) spatially unbalanced sampling; and (3) 

multiple response variables.  These difficulties are addressed by (1) applying a delta-model with 

a linear predictor that is shared among years and species; (2) projecting the linear predictor from 

𝑛𝑠 knots to any possible location within the modeled spatial domain, including locations with 

missing or spatially misaligned data; and (3) associating each mode of variability 𝜆𝑓(𝑡) with a 

map representing the impact 𝑥∗(𝑠, 𝑐, 𝑓) of a positive phase for each of 𝑛𝑐 modeled variables at 

any location 𝑠 within a defined spatial domain.  In particular, accounting for spatially misaligned 

data allows EOF to be applied to multiple sampling programs, operating at different locations or 

over different spatial domains, although we do not explore the idea further here.   

Parameter estimation 

Parameters for both configurations of the general model can be estimated using a publicly 

available R package VAST for vector autoregressive spatio-temporal models (VAST; Thorson 

and Barnett, 2017), using release number 3.1.0 (https://github.com/James-Thorson-

NOAA/VAST).  This package estimates spatial variables 𝑥(𝑠, 𝑐, 𝑓) for 𝑛𝑠 “knots” as random 

effects following a Gaussian Markov random field, uses a predictive process formulation to 

interpolate the value of 𝑥∗(𝑠𝑖, 𝑐𝑖, 𝑓) for the location 𝑠𝑖 and category 𝑐𝑖 of sample 𝑖 given 

𝑥(𝑠, 𝑐, 𝑓), and models the correlation in 𝑥(𝑠, 𝑐, 𝑓) between any two knots using a stochastic 

partial differential equation (SPDE) approach (Lindgren et al., 2011) which approximates a 

Matérn correlation function (see Appendix 2 for details).  Fixed effects are then estimated using 

maximum likelihood (ML) techniques while approximating the marginal likelihood using the 

Laplace approximation (Skaug and Fournier, 2006), and efficiently identifying the ML estimates 

using automatic differentiation (Fournier et al., 2012) as implemented using the TMB package in 
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R (Kristensen et al., 2016).  Further details regarding VAST can be found elsewhere (Thorson 

2019).   

 Factor-analysis models generally require some constraints on loadings matrix 𝜆𝑓(𝑡) to ensure 

that the model is identifiable.  We follow previous practice in fixing 𝜆𝑓(𝑡) = 0 for all 𝑓 > 𝑡 

(Thorson et al., 2015b; Zuur et al., 2003), but then rotate results to ensure that they are 

interpretable similarly to principle components analysis (PCA).  In particular, we define a 

rotation matrix 𝐑 𝑡 such that 𝚲𝐑 has columns identical to the eigenvectors of 𝚲 𝚲, and then define 

𝚲𝐑 as the climate indices and 𝐑𝐗(𝑐) as the map for each category 𝑐.  We specifically use a 

“PCA rotation” (Thorson, 2019b; Thorson et al., 2016a), which maximizes the variance for each 

axis in sequential order, and this differs from varimax rotation which would instead associate 

each mode of variability with a minimal subset of species.   

Validating EOF application using sea surface temperature 

Having defined a statistical model that generalizes a conventional EOF analysis, we seek to 

validate that it yields estimates that are similar to an EOF analysis.  We therefore download 

monthly average sea surface temperature for every 2° by 2° grid cell within 20°-60°N and 132°-

250°W for every month from Jan. 1950 through Jan. 2018 from the NOAA Extended 

Reconstructed Sea Surface Temperature (v.5) product (Huang et al., 2017).  We analyze these 

data with Eq. 3a-3b using three indices, and hypothesize that the 1st index will represent spatial 

differences in average temperature, the 2nd will be correlated with the Pacific Decadal Oscillation 

(PDO), and the 3rd will be correlated with the North Pacific Gyre Oscillation (NPGO).  However, 

we note that small differences with the PDO will likely arise because we are analyzing only 

January SST, while the conventional PDO index is calculated from monthly SST measurements.  

We also note that differences are likely to be greater for the NPGO because the conventional 
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NPGO is calculated from sea surface height (SSH), and while SST and SSH are often correlated 

they are not guaranteed to be perfectly correlated.   

Estimating an ecosystem index from bottom-trawl data in the eastern Bering Sea 

We also seek to demonstrate the benefits of estimating oceanographic indices directly from 

multispecies biomass-sampling data.  To do so, we download bottom trawl sampling data from 

the eastern Bering Sea bottom trawl survey (Lauth and Conner, 2016) for fourteen commonly 

occurring bottom-associated fish and crab species.  We then fit Eq. 4a-4b to these data while 

again estimating three oceanographic indices.  We hypothesize that the 1st will represent species-

specific habitat preferences that are stable over time, and do not have strong a priori hypotheses 

regarding the remaining two indices.   

Results 

Validating EOF application using sea surface temperature 

Visualization of the three dominant indices fitted to January average sea surface temperature 

(Fig. 1) confirms that the spatio-temporal model uses the 1st axis to represent persistent spatial 

differences in temperature, and the 2nd axis accurately reproduces the annual PDO index with a 

correlation of 0.92 with the PDO calculated as the EOF of these data.  The spatial map associated 

with the PDO index confirms that years with a positive PDO phase have warmer temperatures 

inshore off the coast of North America and cooler temperatures in the central North Pacific.  

Similarly, the 3rd index is correlated with the NPGO, although the correlation (0.52) is 

substantially weaker than for the PDO.  The map associated with this index is orthogonal to the 

PDO map, and shows that a positive phase for the NPGO is associated with decreased water 

temperatures in the California Current from California southward, and elevated temperatures in 

the northern Bering Sea.  The maps for PDO and NPGO are correlated with published estimates 
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and, as expected, the annually varying intercepts (𝛽(𝑡) in Eq. 3a) show a gradual increase over 

time representing climate-forcing of surface temperatures in the Pacific Ocean.   

Estimating an ecosystem index from bottom-trawl data in the eastern Bering Sea 

Visualizing the three indices estimated from bottom-trawl survey data for fourteen bottom-

associated species in the eastern Bering Sea (Fig. 2A) shows that these multispecies indices 

partition temporal variability into stable (1st index), multi-decadal trend (2nd index), or 

interannual variability (3rd index).  As expected, stable habitat preferences (the 1st axis) explains 

the majority (87%) of total (spatial and spatio-temporal) covariation, while long-term shifts (2nd 

axis) explains more (9%) than the axis of interannual variability (3rd axis; 4%).  For comparison, 

we also calculate the proportion of temporal covariation explained by each factor; this confirms 

that the first axis explains only 10% of temporal while axis 2 and 3 both explain considerably 

more (63% and 28%, respectively).   

 Visualizing a “habitat preference” index for each species (Fig. 2B, left column) shows 

expected relationships where, for example, snow crab has a more northward distribution than 

Tanner crab, arrowtooth flounder has elevated density in the outer domain in the southwestern 

edge of the survey, and Pacific cod has relatively weak preferences relative to other species.  

Variation among years in the magnitude of this index (i.e. a higher value in 1995 than 1998) 

presumably indicates years where species’ distribution is more (1995) or less (1998) in-line with 

their long-term habitat preferences.  The “multi-decadal trends” index shows a decrease over the 

37 years analyzed here, and its spatial map shows, for example, that it is capturing the long-term 

decrease in density for Alaska skate and arrowtooth in the outer domain relative to the middle 

domain, as well as a long-term decrease in Tanner crab near Bristol Bay (Fig. 2B middle 

column).  Finally, the “interannual variability” index shows 1-3 year periods of positive or 
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negative stanzas from 1982-1998, then changing to 6-8 year stanzas from 1999-2017.  A 

negative phase for this index (Fig. 2B right column) is associated e.g., with increased density of 

Alaska pollock and Pacific cod on the northern boundary of the eastern Bering Sea survey and 

decreased density of Tanner crab in this same area (see Appendix 3, Fig. S1 for patterns for other 

species).  These three indices collectively capture several well-documented trends in the eastern 

Bering Sea, for example, the long-term shift in distribution for arrowtooth from the outer to 

middle domain (Fig. 3 bottom row).  In particular, these indices capture increased density for 

Alaska pollock and Tanner crab in the northern portion of the survey in 2017 relative to 1982-

1996.  Similar patterns are also captured when fitting a model that includes independent spatial 

and spatio-temporal variation for every species (Appendix 3, Fig. S2), so we conclude that these 

patterns are not artefacts of the EOF model structure but instead are a low-rank representation of 

patterns found in the bottom-trawl survey data.  Finally, we conclude by noting that that the 

“interannual variability” index is highly correlated (0.74) with the area of the eastern Bering Sea 

with summer bottom temperatures less than 2° C (Fig. 4), despite the model not fitting to any 

physical data, where the small standard errors for this estimated index (black whiskers in Fig. 4) 

suggest that the pattern is generated by signal within available data rather than statistical error 

introduced by noisy sampling data.   

Discussion 

 In this paper, we have shown that a multivariate spatio-temporal model can be used to apply 

empirical orthogonal function analysis to multispecies samples of population densities.  EOF 

analysis is widely used to summarize physical processes (e.g., sea surface temperature) but is 

less-often used to summarize biological processes due to the noisy, zero-inflated, and 

multivariate nature of common biological sampling.  Multispecies marine resource surveys are 
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routinely collected in standardized designs in many marine ecosystems worldwide, including 

Europe, North America, East Asia, Southern Africa, and Oceana, and the dominant axes of 

variability for ecosystem dynamics in these systems can now be summarized using the publicly 

available software package, VAST.   

 We have also demonstrated our approach using two case studies:  temperature in the North 

Pacific and biomass-samples for bottom-associated fishes and decapods in the eastern Bering 

Sea.  In both examples, the dominant axis represents persistent spatial variation in a given 

physical or biological variable, and this axis explains 87% (for biological) and 99% (for 

physical) variance.  This portion of variance is not typically quantified during EOF analysis, 

which is often applied to anomalies and therefore long-term patterns are eliminated prior to 

analysis.  We retain this portion of variance (rather than centering data prior to analysis) so that 

the same algorithm can be applied to biological sampling data that are best described using a 

delta-model or other “dust-bunny” distributions (McCune and Root, 2015; Thorson, 2018).  The 

2nd axis then represents longer-term spatial trends in the biological case-study, in this case 

represented in part by the shift in distribution of several flatfishes from offshore to onshore areas.  

Additional trends may be driven by east-west movements (e.g., great sculpin). The distribution 

shift for arrowtooth flounder has been previously documented (Spencer et al., 2016; Thorson et 

al., 2016b), and has been attributed to both the extent of the cold pool (Kotwicki and Lauth, 

2013) and an interaction between the bottom temperature and population abundance (Ciannelli et 

al., 2012).  The 3rd axis, by contrast, corresponds to the widely documented role of sea-ice and 

cold-pool extent in the Bering Sea (Hunt et al., 2011; Stabeno et al., 2012).  It is comforting that 

an EOF analysis of biological variables is able to recover this well-documented, bottom-up 

driver of ecological dynamics.  However, the fact that the “cold pool” axis explains less variance 
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than the “multi-decadal trends” axis underlines the importance of future studies to identifying 

bottom-up or top-down drivers of long-term spatial redistribution of flatfishes in this region.   

 We also note a paradox regarding the 3rd axis in the eastern Bering Sea.  This axis has an 

index that closely corresponds to the extent of the cold pool, and fluctuations in cold-pool extent 

are primarily driven by changes in bottom temperature in the northern portion of the EBS 

(Appendix 3, Fig. S3) although some cold years (e.g., 1999, 2006-2010, 2012) have large enough 

cold pool extent that they then decrease bottom temperatures in the southern EBS.  However, the 

species-specific maps associated with the 3rd axis of variability resemble the map of bottom 

temperatures (Appendix 3, Fig. S3) for some species but not others.  In particular, the spatial 

areas associated with changing bottom temperatures overlap with the 3rd axis maps for several 

species (e.g., Pacific cod. walleye pollock, Tanner crab) but not others (e.g., yellowfin sole, 

Alaska plaice, great sculpin).  These latter species appear to show changes in spatial distribution 

between years with large and small cold-pool extent, but their distribution does not necessarily 

expand as a function of local bottom temperatures.  This supports previous research showing that 

local bottom temperature in isolation is not sufficient to explain or predict future distribution for 

many EBS species (Litzow, 2017; Thorson et al., 2017b; Thorson, 2019a).  In fact, it suggests 

that distribution for these species may be driven by a mechanism that is correlated with 

fluctuations in cold-pool extent, but not necessarily bottom temperature itself.  This could 

include changes in the timing of the plankton bloom as driven by timing of ice melt and 

indirectly related to bottom temperatures (Hunt et al., 2011; Sigler et al., 2014), the timing of 

ontogenic movement from nearshore to offshore habitats (Nichol et al., 2019) or the opening of 

thermal gateways across the middle shelf which allow species located in the outer shelf to move 

toward the inner shelf (Ciannelli and Bailey, 2005).  These and other potential mechanisms could 
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result in a spatial distribution that differs between warm and cold years (and hence is correlated 

with the cold-pool extent), but where distribution in those years is not necessarily correlated with 

local bottom temperatures.  Alternatively, spatio-temporal dynamics that are in phase with the 

extent of the cold pool index may also be driven by a change in catchability of the bottom trawl 

sampling gear. The bottom trawl only samples the lower few meters of the water column during 

a fixed summer season, and catchability may vary among years either due to variation in gear 

performance or spatial availability (von Szalay and Somerton, 2005; Nichol et al., 2019).  These 

many processes could result in species catch rates that covary with sea-ice extent but not with 

localized temperatures, necessitating a flexible approach to modelling region-scale drivers of 

distribution for these species.  Relatedly, these species vary widely in generation time and life-

history strategy, such that it is surprising that the majority show a strong response to cold-pool 

extent (i.e., the 3rd factor).  Despite these differences in life-history, our results suggest that these 

various bottom-associated species all shift their spatial distribution in response to behavioral 

cues, prey availability, or other mechanism that are strongly correlated with cold-pool extent.   

 A common approach for examining the effect of large-scale climate fluctuations on the 

biological productivity of marine organisms is to reduce complex physical dynamics to one or 

more indices and then correlate these indices with measures of biological production (Stenseth et 

al., 2003).  This approach has contributed to characterizing patterns of climate-productivity 

covariation in the ocean, but it is challenged by the evolving nature of these relationships over 

time and space (Litzow et al., 2018).  Analysts could also use the statistical generalization of 

EOF analysis to analyze the link between biology and physics in two new ways.  First, as shown 

here, estimated modes of biological variation can be compared with relevant measurements of 

physical variables across scales, to provide some interpretation of what physical processes are 
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correlated with leading biological variation.  Linking physics and biology in this way has some 

benefits for interpreting biological modes of variation, while still visualizing the residual 

biological variation that is not otherwise explained.  Importantly, an estimated mode of 

biological variation may be correlated with a known physical process during one portion of the 

time-series and not another, and this can be used to indicate when the linkage between these 

physical and biological processes is nonstationary.  Second, biological indices could be extracted 

and used directly in a secondary modelling framework, e.g., as an annual index in a population-

dynamics model (e.g., Schirripa et al., 2009).  This second approach allows modes of biological 

variation to be propagated even when the physical mechanisms driving variation are poorly 

understood, and therefore represents ecosystem drivers without directly modelling them.   

 In the application to groundfish data, EOF analysis decomposes biological variation into 

stable patterns (1st mode), multi-decadal trends (2nd mode) and interannual variability (3rd mode). 

The scale order of these indices may not always be the same, depending on how variability at 

each scale contributes to the total variability of the biological data set.  Similarly, other data sets 

may lack either longer-term trends or strong internanual variability.  Nevertheless, decomposing 

biological variability across temporal scales may enable a more mechanistic understanding of the 

effect of climate on biological productivity (Drinkwater et al., 2010; Ottersen et al., 2010).  

 The generalization that we propose here allows applications to data that are not necessarily 

normally distributed and can handle the zero inflation via application of a delta model. The error 

structure is flexible to allow temporally correlated measurements and non-stationarity (see 

Thorson (2019b) for a full description of features available in package VAST). The generalization 

presented here can be used to simultaneously detect patterns of covariation across space and time 

in multispecies assemblages, and therefore overcome these problems. This ability to provide 
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simultaneous inference across taxa can provide a mechanistic understanding of bottom up and 

top down dynamics affecting species abundance/productivity (Cury et al., 2008). We envision 

future biological oceanography applications for the analyses of meroplankton (McClatchie et al., 

2018), remote sensing products for characterization of biogeochemical and ecological oceanic 

boundaries (Kavanaugh et al., 2014), and zooplankton collections (Colebrook, 1978), in addition 

to the application demonstrated using survey data for groundfishes.  

 We see three primary avenues to extend this work, which we recommend for future research: 

1. Spatially varying coefficient models to forecast distribution shifts:  Our analysis for the 

eastern Bering Sea suggests that many species have a strong but nonlocal response to 

regional temperatures, as shown by the similarity between the 3rd axis and cold-pool extent.   

These indices can be included in species distribution modes using a apatially-varying 

coefficient (Bacheler et al., 2009; Bartolino et al., 2011), and recent research corroborates 

that a spatially varying response to cold-pool extent improves forecast skill relative to local 

temperature in isolation (Thorson, In press).   We hypothesize that annual indices such as 

cold-pool extent will be informative about low-frequency variability in species distribution 

that is currently lacking in long-term forecasts of distribution shift in response to climate.  

2. Joint rank-reduction models of physical drivers and biological responses:  An interesting 

extension of the generalized EOF analysis used here is to include both physical and 

biological variables, to make inference on the shared covariance among them and the spatial 

patterns in which this covariance is dominant (Brown and Fiechter, 2012). The signal of 

anthropogenic climate change is emerging from the envelope of natural variability in many 

ecosystems globally (Henson et al., 2017), including the Bering Sea (Walsh et al., 2018). 

This anthropogenic change makes nonstationary behavior in environmental variables 
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(changing mean or variance) an increasingly important factor in ecosystem dynamics 

(Burrows et al., 2011). The spatio-temporal generalization of EOF analysis presented here 

may be expanded to include both physical and biological variables, to make inferences about 

shared covariance and to directly infer the role of nonstationary physical dynamics in leading 

ecosystem patterns (Brown and Fiechter, 2012). In particular, the estimated linkage between 

physical and biological variables could be useful to estimate the spatial map of physical 

conditions that is most strongly associated with variation in a given biological variable. In 

essence, this could be used to identify the physical index that maximizes predictive power for 

a given species.    

3. Model evaluation via null models and simulation testing:  Finally, we recommend future 

research regarding the expected performance of applying EOF to multivariate biological 

samples.  Likely model performance could be explored via simulation-testing, where fits to 

data from multiple ecosystems could be used to simulation new data (potentially with 

different sampling designs or sample sizes) and the model could then be re-fitted to explore 

measure model performance.  The performance of multivariate spatio-temporal models when 

estimating “factor-loadings” (analogous to EOF indices in this analysis) and associated 

spatial maps has been simulation-tested previously (e.g., Thorson et al., 2016a, 2017a, In 

press), but performance specifically when generalizing EOF analysis remains a useful topic 

for further testing. Alternatively, researchers could adapt previously developed “null models” 

(e.g., Planque and Arneberg, 2018) to determine whether the statistical approach to EOF is 

likely to identify erroneous patterns from autocorrelated noise.   

Another issue raised by anthropogenic climate change is the creation of novel patterns of 

covariance among different ecologically important physical variables, which may produce 

495 

496 

497 

498 

499 

500 

501 

502 

503 

504 

505 

506 

507 

508 

509 

510 

511 

512 

513 

514 

515 

516 

517 



 

25 
 

nonstationary statistical relationships between environmental drivers and ecological responses, or 

nonstationary relationships among species (Litzow et al., 2018; Williams and Jackson, 2007; 

Wolkovich et al., 2014).  This possibility is not accounted for in the current study, as our 

approach assumes stationary relationships among species.  We therefore recommend future 

methodological research to incorporate time-evolving community relationships in our modeling 

approach in order to examine the potential role of nonstationary community relationships under 

climate change.  
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Fig. 1 – Visualization of three dominant axes of variability for sea surface temperature in the North Pacific (rows), where each axis 

includes an index (left columns) showing the magnitude and phase (y-axis) for each year (x-axis), as well as a spatial map (right 

column) showing the variability in temperature expected during a positive phase, where each map has a spatial variance of 1.0.  For 

each axis we list the proportion of variance explained (top-right of each panel) as well as the proportion of temporal variance 

explained (calculated after subtracting off the mean across years for each index; listed in parentheses).  The second axis is highly 

correlated with the PDO and the third axis is correlated with the NPGO, so in each case we show the estimated index (black line) 

relative to the published PDO or NPGO index (red line) and list the correlation between estimated and published indices (top-left of 

each panel).    
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Fig. 2 – Visualization of three dominant axes of variability for bottom trawl sampling of biomass 

for fourteen bottom-associated fish and crab species in the Eastern Bering Sea, where each axis 

includes an index (Fig. 2a) showing the magnitude and phase (y-axis) for each year (x-axis), as 

well as a spatial map (Fig. 2b) showing the variability in biomass expected during a positive 

phase for seven of the fourteen modeled species (rows) and each of the three indices (columns), 

where each map has a spatial variance of 1.0.  For each axis we list the proportion of variance 

explained (top of Fig. 2a), as well as the proportion of temporal variance explained (calculated 

after subtracting off the mean across years for each index; parentheses in Fig. 2a).  For spatial 

maps associated with each axis of variability for the remaining seven species, see Fig. S1.   
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Fig. 2B: 802 
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Fig. 3 – Visualization of predicted biomass for three of the fourteen modeled species (rows) in six of the thirty-six modeled years.  

Species are selected from those shown in Fig. 2B, while years are evenly spaced from 1982-2017; for comparison with a model that 

includes independent spatial and spatio-temporal for each species see Appendix 3 Fig. S2.   
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Figure 4 – Comparison of the 3rd estimated index (black bullets) as well ±1.96 times the 

estimated standard error in each year (black whiskers), as calculated using Monte Carlo 

simulation of the estimated loadings matrix 𝜆𝑓(𝑡) and the inverse-Hessian matrix of fixed 

effects, applied to bottom trawl sampling of biomass for fourteen bottom-associated fishes and 

crabs in the Eastern Bering Sea (black line; left y-axis label) and the cold pool area (blue line; 

right y-axis label).  The correlation between estimated and published indices is listed (top-left of 

the plot). 

810 

811 

812 

813 

814 

815 

816 

 817 

 818 


	Defining indices of ecosystem variability using biological samples of fish communities: a generalization of empirical orthogonal functions
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Bibliography



